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Uniform High-Order Difference Schemes 
for a Singularly Perturbed Two-Point 

Boundary Value Problem 

By Eugene C. Gartland, Jr. 

Abstract. A family of uniformly accurate finite-difference schemes for the model problem 
-eu" + a(x) u' + b(x) u = f(x) is constructed using a general finite-difference framework of 
Lynch and Rice [Math. Comp., v. 34, 1980, pp. 333-372] and Doedel [SIAM J. Numer. 
Anal., v. 15, 1978, pp. 450-465]. A scheme of order hP (uniform in e) is constructed 
to be exact on a collection of functions of the type {1, x, . . ., xP, exp(fJ a), 
x exp(' J a), . . , xP exp(} J a)}. The high order is achieved by using extra evaluations of the 
source term f. The details of the construction of such a scheme (for general p) and a 
complete discretization error analysis, which uses the stability results of Niederdrenk and 
Yserentant [Numer. Math., v. 41, 1983, pp. 223-253], are given. Numerical experiments 
exhibiting uniform orders hP, p = 1, 2, 3, and 4, are presented. 

1. Introduction. We are concerned with the numerical approximation by finite-dif- 
ference techniques of the linear two-point boundary value problem 

1 1 ~~Lu -,-u" + a(x) u' + b (x) u f f(x), O < x < 1, 

u(() g, u(1) = g= . 

Such model problems are studied because, among other reasons, they describe (when 
e is small compared to a) physical situations in which convective forces dominate 
diffusive forces. This circumstance arises often in fluid flow and convective heat 
transport problems. 

It is assumed, at a minimum, that a, b, and f are bounded continuous functions 
and that a(x) > a > 0 on [0,1]. This last condition prohibits the development of 
turning points on interior layers (see, for example, [27]). Greater smoothness 
conditions are required in some of the theorems that follow. 

The numerical approximation of model problems like (1.1) above has been the 
object of investigation of numerous researchers for some time. Stiff vector systems 
have been attacked by finite differences in [1], [18], [19], and [34], by collocation 
methods in [4] and [5], and by asymptotic/numerical techniques in [15] and [16] (in 
relation to this last approach, see also [9] for an application to a single nonlinear 
equation). The single nonlinear equation similar to (1.1) has been approached by 
integrating to steady state the related time-dependent problem using one-sided 
differences of the Engquist-Osher type [2], [26], and [30]. The linear model problem 
(1.1) and its analogues in conservative form have been approximated numerically 
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using various projection methods including collocation [14] and Galerkin techniques 

[6], [28], [29], and [33]. 
The present paper is concerned with finite-difference approximations, which have 

received their share of attention (see, for example, [7], [8], [13], [17], and [20] and 
references contained therein). A continuous source of analyses of various approaches 
to these problems is supplied by the proceedings of the BAIL conferences edited by 
J. J. H. Miller [22], [23], and [24]. We also mention the book [12]. 

It is the object of the present paper to develop and analyze a general approach to 
constructing uniform (with respect to e) high-order finite-difference approximations 
to (1.1). The technique utilizes the HODIE framework of Lynch and Rice [21] and 
Doedel [11]. It proceeds by constructing a difference approximation locally that is 
exact on a collection of functions of the type 

(1, x..., xK expt- a (x) dx), 

x exp( Ja(x) dx). x Lexp(?J a(x) dx)). 

The procedure is automated in the sense that the difference coefficients are com- 
puted numerically, by solving a small local linear algebraic system, rather than 
evaluated from closed form expressions. Any uniform order can be achieved, in 
theory, and numerical experiments illustrating uniform convergence rates up to 
O(h4) are presented. 

The high order is achieved by using extra evaluations of the differential operator 
L, that is, of the coefficient functions a and b, and of the source term f. The theory 
is developed under the assumption that f a(x) dx and a'(x) are known, but it is 
then shown that using discrete approximations to these, built on the same evalua- 
tions of a(x) as are required by the basic finite-difference construction, yields the 
same uniform order of convergence. 

The truncation error analysis utilizes a decomposition, proved in Section 2, of the 
true solution 

u(x; E) = A(x; E) + B(x; 8) exp( iJ a)I 

where, for sufficiently smooth data, the functions A and B have continuous 
derivatives up to a given finite order that can be bounded independently of e. This 
decomposition implies many a priori estimates on u and its derivatives that have 
appeared elsewhere in the literature, and it does not rely on monotonicity arguments 
and their consequent b(x) > 0 constraint. The discretization error analysis is 
accomplished using the general stability results of Niederdrenk and Yserentant [25]. 

2. Mathematical Preliminaries. Under the minimum assumptions above (continu- 
ity of a and b and positivity of a on [0,1]), the boundary value problem (1.1) is 
stable, uniformly in E for all E sufficiently small. In particular, we have the following 
result. 

THEOREM 2.1. Let the coefficient functions a and b of the differential operator L in 
(1.1) be continuous on [0, 1], and let a satisfy a(x) > a > 0, 0 < x < 1. Then for E 
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sufficiently small, there exists a constant C independent of E such that vlilil < 
C{ IILvII1 + Iv(0)I + Iv(1)I} for all V E C2[0, 1]. 

Proof. It follows from Theorems 9 and 10 of [25] that it is sufficient to establish 
that for all E sufficiently small-there exists a constant C' independent of E such that 
all solutions w E C2[0, 1] of the homogeneous equation Lw = 0, 0 < x < 1, satisfy 

11 w 11 < c0( w(o) I + I w(l) 1) 

But this is an immediate consequence of the standard singular perturbation con- 
struction as in [27, Section 3.1]. E 

The stability estimate above will be used in the discretization error analyses of 
Section 5; the discrete approximation to (1.1) will inherit an analogous property. For 
the purpose of the truncation error analyses of Section 4, we also require the 
following representation result about the true solution u of (1.1). 

THEOREM 2.2. Let k be a positive integer. Then for E sufficiently small and a, b, and 
f sufficiently smooth, the solution u of (1.1) admits the representation 

(2.1) u(x; A) A(x; ?) + B(x; ?) exp(- e| a), 

where A and B and their derivatives up to order k can be bounded on [0,1] 
independently of e. 

Proof. First express u as a sum u = v + w, where v and w satisfy 

-Ev" + a(x)v' + b(x)v =f(x), 0 < x <1, 
v(0; e) =go 

and 

-ew" + a(x)w' + b(x)w = 0, 0 < x <1, 

w(0; E) = 0, w(1; E) = g - v(; E). 

We consider the v function first. Express v in the form of a perturbation expansion 

V(X; e) = V0(x) + V1(X) * + * +Vk-Il(X) * X + Vk(x; k) * 

where the coefficient functions vo, ... ., vk - satisfy 

a(x)v' + b(x)vo = f(x), v0(o) =go, 

and 

a(x)vj' + b(x)vj = v"1, vj(0) = 0, j = 1 ..., k -1, 

and the remainder function Vk is required to satisfy 

-(2)Vk + a(x)Vk + b(x)Vk= v 1(x), 0 <x< 1, 
(2.2) ~~~~Vk(0) = Vk()=0 

Now vo,..., vk 1 are independent of E and can be made as smooth as we wish by 
making a, b, and f sufficiently smooth. It is enough, then, to show that I k(P) I 0 = 

O(E-P), p = 0,..., k. We do this by using an integral equation formulation as in 
[10] and [32]. Multiplying both sides of (2.2) by e exp(f 1 a), which is an integrating 
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factor for Vk" - (a(x)/e)Vk', and integrating from x to 1 yields 

Vk(x) = Vk,(l)e (1/e)ba -- -f b(y)e(l/E)J aVk(y) dy 

(2.3) X 

+ e f >v Vk_1(y) dy. 

Our estimates on the derivatives of Vk will follow from this, once we have control of 

VA'(1). 
To get an expression for Vk'(1), integrate (2.3) from x to 1 and use the boundary 

condition Vk(1) = 0 to get 

Vk(x) = -Vk'(1)J e (1/e)/vdy + b (y) e( /Y)J d(lVk(y) dy 

- -|i [J| e(1/E)v d ] v"i(y) dy. 

Evaluating at x = 0 and using the other boundary condition Vk(0) = 0, yields 

fo b(y) [foe(/e)Ja d] Vk (y) dy- of[J foe(/e) adV-1(y) dy 
Vk (1)~~~~~~~~~~~~~~~~~~~~ 

jol e(1/e) a dy 

Now Vk can be bounded independently of e for e sufficiently small [10], v1- , is 
independent of e (and bounded if a, b, and f are sufficiently smooth), and the 
denominator can be bracketed, 

ji 
(-e(1/e)Jfa) < 

fl 
e-('/) ady '< e/(f (1-a) 

where a min{a(x): 0 < x < 1) and a- maxa(x):0 < x < 1). It follows that 

Vk'(1) = (e'); therefore, from (2.3), IlIVkllo = O(cl). Successive differentiations of 
(2.3) yield that lIVk(P)I = 9(E-P), p = 2,..., k. We conclude that for a, b, and f 
sufficiently smooth, 

Vlllo V,tlo- |V(k)lo < C, 

where C is independent of e. 
The w-problem can be handled similarly. Two linearly independent solutions of 

the homogeneous equations Lw = 0 can be constructed in the form 

y(X; e) = vYO(x) + y1(X)) + * * *+Ykkl(X)k + Yk(X; e)ek 

and 

z(x; e) = e e)RIa(z0(x) + z1(x)e + +Zk_.z (x)ekl + Zk(x; je) , ) 

where the component functions here satisfy 

a(x)yo + b(x)yo = O, -(a(x)zo)' + b(x)zo = 0, 

Yo(1) = 1, zo(l) = 1, 

a(x)y,/ + b(x)yJ -y," -(a(x)z1)' + b(x)zj =zj-11 

yj(1)=0, j= 1, ... ,k-1, -1. Z1(1)=0, j= 1, ... ,k-1, 
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and 

-eY" + a(x)Y4 + b(x)Yk Yk1, -eZE' - (a(x)Zk) + b(x)Zk Zk-, 

Yk(O) = Yk(1) = 0, Zk(O) = Zk(l) = 0' 

These two solutions can be combined to form a solution of the w-problem, and the 
remainder functions Yk and Zk can be analyzed exactly as before. The result fol- 
lows. O 

The decomposition (2.1) is a standard sort of splitting for these problems, and the 
asymptotic correctness of the expansions has been rigorously established before (see, 
for example, [10], [27], or [32]). However, we could find no reference for the 
observation on the boundedness of the derivatives of the A and B functions, and we 
rely heavily on this in the development that follows. Also, we mention that (2.1) 
implies the inequalities 

I()(x)I c(1 +, (1)f a j = O0 ... . k, 

where C is independent of e. This type of a priori estimate is used often in the 
literature. 

3. The Finite-Difference Scheme. We wish to construct compact finite-difference 
approximations to (1.1). For simplicity we use a uniform mesh xi = ih, i = 0,..., n, 
h = 1/n. We construct a discretization of the form 

J 
Lu h 

ai u,_h + a h0uZ + au h = E i= 1,..., n - 1, 
(3.1) j=1 

uh = go, Uh = u0=g n, u 1. 
The points (. i.., j are auxiliary evaluation points (also called HODIE points 
[21]). They are distinct and lie between xi_1 and xi+1; some of them may coincide 
with mesh points. 

The coefficients, ai-1' ai O and ai l, and weights, fi'1,..., /3w, are determined so 
that the scheme is locally exact on some (J + 2)-dimensional space of approximat- 
ing functions, in the sense that this space is contained in the kernel of the local 
truncation operator 

J 

TjA] Lhki- E fi,1Lk(tij,), 
j=1 

subject to the normalization 

(3.2) E f83j = 1. 
j=1 

This leads to a local linear algebraic system to determine the a's and /3's. For J = 1 
and {il = xi, the scheme that is exact on (l, x, x2} is precisely the standard 
central-difference approximation, while for J = 1 and (i l = xi, one gets the Allen- 
Southwell scheme [3] by requiring exactness on {1, x, exp(a(xi)x/e)}. 

This general approach to finite differences has been analyzed by Lynch and Rice 
[21], who refer to it as the HODIE (High-Order Differences via Identity Expansions) 
Method, and Doedel [11] (see also [7], where a variation of this is referred to as an 
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Operator Compact Implicit Scheme). These authors have shown that for a problem 
such as (1.1), with E fixed, if one uses J evaluation points and imposes exactness on 
(1, x,..., xF+1}, then for h sufficiently small, the local linear system that defines 
the coefficients and weights is nonsingular and produces a stable approximation 
with discretization error at least (9(hJ). 

The difficulty with the approach as it applies to our problem (1.1) is that no 
matter how large J is taken above, the resulting discretization is not even uniformly 
(9(h). That is, while IlehHl < chJ, c depends on - and blows up as - -* 0 and 
sup(h-lIIehII) -o cc as - -* 0. To remedy this situation here we emulate (2.1) and 
construct our scheme to be exact on 

{i,x,...,xP,exp-f a),xexp(- a),...,xP exp(- a)}. 

It is natural to refer to such a scheme as an exponentially fitted HODIE scheme. To 
produce a well-posed local linear system with such a family of approximating 
functions, it is necessary that the auxiliary points be distributed with p in the 
upwind subinterval [x, _ 1, x,] and (p - 1) downwind in (x,, x,1 ]. We will analyze 
here the special (natural) case of equally spaced points, 

(I,1 =xi, p=l 

( ) ,= Xi-+ - lh, j=1,...,2p-l, p=2,3,.... 

We now prove that for these points the local system is nonsingular for all h 
sufficiently small, independent of E. 

THEOREM 3. 1. Let the positive integer p be given. If the coefficient functions a and b 
in (1.1) are sufficiently smooth (in addition to satisfying a(x) > a > 0), then for all h 
sufficiently small, independent of E and i, the coefficients a, -, al0, and ail and 
weights 91J, - ., /1,2p -1 in the finite-difference approximation (3.1) are uniquely deter- 
mined by the conditions of exactness on the family of functions {1, x, ..., Ixp 
exp( f x a), x exp( f fxa), . . ., xP1 exp( f fxa)}, subject to the normalization (3.2) 
and distribution requirement (3.3), and satisfy 

(a) Kla + al0o + al,11 M < oo, 

(3.4) (b) h(a,,,1 - a,,-) > m > 0, 

(c) a,1, < -c/h2 2 a11 < 0, 

where m and M are constants that do not depend on h, c, or i. 

The proof of this theorem is lengthy and detailed and is relegated to the Appendix 
in the Supplements section of this issue. Briefly, it proceeds by carefully analyzing 
the concerned linear system for h small in the three cases h/c -> 0, 0 < p < h/c < p 
< oo, and h/c -- oc. It is a consequence of this analysis that & B p 1, /.i,2p- 1, 

and a,'1 all go to zero as h/c -- oo, and the finite-difference scheme converges to a 
2-point dO( h P) discretization of the form 

p 
a1'-L1 + 1 10u = I ) 

j=1 
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for the reduced equation 

a(x)u' + b(x)u = f(x) 

that is exact on (1, x,.. ., xP): The estimates (3.4a, b, and c) are required in the 
stability analysis in Section 5. 

4. Truncation Error Analysis. We now analyze the truncation error T defined by 

Ti Ti[u] = ai,-1u(xi-1) + ai,0u(xi) + ai,lu(xi,I) 

(4.1) 2p-? 

j=1 

Here u is the true solution of (1.1), and ? P,-l.. 1i,2p-1 are the coefficients and 
weights of an exponentially fitted HODIE scheme constructed as in Section 3. This, 
when combined with an appropriate stability result, can be used to appraise the 
discretization error e h, where e h U(X,) - u , since Lheh = Ti. Our main result on 
the truncation error is the following. 

THEOREM 4.1. Let the positive integer p be given, and let T denote the local 
truncation error (4.1) in an exponentially fitted HODIE approximation to (1.1) of the 
form (3.1) constructed to be exact on 

( X ...IxP,exp( a),xexp(x f a), I xP-lexp( a) 

and subject to the normalization (3.2) and distribution requirement (3.3). If the 
functions a, b, andf in (1.1) are sufficiently smooth, then there exists a constant c that 
is independent of e, h, and i, such that for all E sufficiently small and all h sufficiently 
small (independent of e), 

TI i chP( + exp a n - 1) 

Proof. As in the proof of Theorem 3.1, we consider the interval [-h, h] (suppress 
the subscript i) and denote E(x) = exp('fox a). It is a rather straightforward 
consequence of the leading order behavior of the finite-difference coefficients a-, 
and a, (as analyzed in the proof of Theorem 3.1) that they satisfy 

{h2 he 
la-,I lallt1, E(-h)la- ll, E(h)lall| < C14 I th E < h, 

for some absolute constant C1. Likewise, the weights PIt, r 
f . iB2p1- I satisfy 

I3 PI I, ,I PI E ((P+1) I P+ I I I.. *, E(42p l102p-l I < C2- 

Now we know from Theorem 2.2 that for E sufficiently small, u admits the 
representation 

u(x) =A(x) +B(x) exp(-}f a), 

where A and B are smooth functions (if a, b, and f are sufficiently smooth) that 
can be bounded together with their derivatives up to any given finite order, 
independently of e. We can estimate the leading order terms of the truncation error 
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as follows. For h > e we have (using the above estimates on the a 's and /3 's) 

|T[xP+?] I = a-,(-I)P+lhP+1 + a hP+1 

- Epj[-E(p + I)ptf-1 + a((y)(p + 1)(f + b(t )(f+?] 

< c3hP 

and 

IT [xPE(x)] = a-1(-1)PhPE(-h) + alhPE(h) 

- E/3E((j)[-ep(p - 1)(f--2 a(- )ptP-l + (b- - )(O )t ]| 

< C 4h- < C 4 e . 

To handle the case h < e, we expand 

E(x) = exp a) = 1 + dix + d2x2+ 

where dk = (9( 7k) k = 1,2 ..... Then xP+1 can be written 

xp+- d {E(x) - [I + dlx + +dpxP + d2xP+2 + ]}. 

And it follows that 

IT[xP+1] I C5 dp C5 T[Xp+2]1 

C 6 hp+2 + EhP + hP+2) < c7hP. 

Finally, still for h < e, we have 

IT[xPE(x)] I = IT[xP(1 + d1x + 

< c8Jd1 I T[xP+1] I C9-hp. 

The truncation error can be bounded via these leading-order terms. Combining these 
various estimates, we get 

JTJ =IT,[u]j = TI[A] + TI? Bexp(- }fa)] 

< cio{ Tx(x -Xi ] + + Tl(x -x) exp( f1 a)]e} 

cii{hP + exp(- f a) Ti[(x ) xP eP( e fX)1} 

< ch P(1 + ?exp( ?f1 a)) O 

We mention that the reason we are able to get by with one less local exponential 
function (and essentially trade a power of h for a factor of 1/c) is that the function 
in parentheses in our bound for IT, has a uniformly bounded Ll-norm; our stability 
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estimate involves a discrete 1-norm of the truncation error, and we get the desired 
bound on the error eh. We take up this aspect now. 

5. Discretization Error Analysis. We can use the general stability theorems in [25] 
to analyze our exponentially fitted HODIE schemes. We first paraphrase an ap- 
propriate version of those results as they apply to our particular problem. 

THEOREM 5.1. Let a uniform mesh xi = ih, i = 0,..., n, h = 1/n on [0,1] be 
given. Let L h be a finite-difference operator of the form 

(5.1) Lhv a,,_1vh + a hv1 + a, vh 

where the coefficients a,,-,, ai0, and a, 1 satisfy, for some positive constants m and M, 

(a) h(a,1 - a,,-,) > m, 
(b) la,,l + aj,0 + aill M, 
(c) a,,-, < -e/h2 < a,1 < 0. 

Let L denote the singulgrly perturbed differential operator of (1.1), and let yo and Yi 

denote solutions of the associated homogeneous problems 

LY0= LY1 = 0, 0 < x< 1, 

Yo (?) = 1, Y1 (?) = 0, 

yO(1) = 0, Yi(l) = 1. 
Let h* IIh and h* IIl denote the discrete oo-norm and 1-norm defined by 

!vh!L - max{|vh: i = 0. n} 

and 
n-I 

I|vh 1 h,Eh | vh. 
i=l 

Let the original differential operator L satisfy, for all 0 < < ' 0 and for all v in 
c2[o, 1], 

||v| < c{|JLv1, + I?v(O) I + Iv(0)1, 

where c is a constant that does not depend on e. 
It then follows that there is an absolute tolerance -q > 0, which does not depend on E 

or h, such that, if the combined residual (consistency error) below satisfies 

(5.2) II(Lh - L)yoIIh,1 + II(Lh - L)yiJh,1 ` ', 0 < < o 

then for all mesh functions Vh and 0 < E < c,, we have 

vh!h c< Lhvhh +jvh +jvhj'j} ||V ||h,oo <' C/ { || LhV ||h,1 0+IV VnI} 

where c' is a constant that does not depend on e. 

This is merely a restatement of Theorem 12 of [25]. In our case, the operators are 
second order, the mesh uniform, and the norms, III III, and III |IIH,, in [25], are 
taken to be continuous and discrete oc-norms. Also, our formulation differs from 
that in [25] in the sign conditions on E and a: LEu -u" + a(x)u' + b(x)u in [25] 
versus Lu --u" + a(x)u' + b(x)u here, in (1.1). This changes, under the trans- 
formation x - 1 - x, the forward differences in [25, Theorem 2] to backward 
differences; the inequalities (a), (b), and (c) above are equivalent to the conditions 
(i), (ii), and (iii) of that theorem. 
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We are now in a position to uniformly bound the discretization error in our 
exponentially fitted HODIE approximations. 

THEOREM 5.2. Let the positive integer p be given. Let eh denote the discretization 
error eh u(xi) - uh, where u is the true solution of (1.1) and Uh is the finite-dif- 
ference approximation to u that solves the exponentially fitted HODIE scheme (3.1), 
with J = 2p - 1, constructed as in Section 3. If the coefficient functions a, b, and f in 
(1.1) are sufficiently smooth, then there exists a constant c that is independent of E and 
h such that for all E sufficiently small and all h sufficiently small (independent of e) 

||ieh||h 00 < ch P. 

Proof. Let T denote the truncation error (4.1); then el' satisfies 

L e h = Ti, i = 1 ,n - 1, eh = eh = ? 

Theorem 4.1 then implies that for E and h sufficiently small, 

Lhefh < cihP(l + eexp( e lxfa)) 

Observe that 

exp ( fa) h exp( e ALa) < f exp( 1 a) dx 

Thus we have IILhehIIh,1 < c2hP. 
We know (Theorem 2.1) that the original problem satisfies the right kind of 

stability estimate, for c sufficiently small. And we know (Theorem 3.1) that our 
finite-difference scheme is well defined and satisfies conditions (a), (b), (c) of 
Theorem 5.1, for ? and h sufficiently small. Our result will follow from Theorem 5.1; 
all we require is that the consistency error in (5.2) be sufficiently small. But this 
expression is nothing more than the sum of the mesh 1-norms of the truncation 
errors in the approximations of problems of the type (1.1) with f(x) 0 and 

go = 1, g, = 0 (in the case of y0) and g0 = 0, g, = 1 (in the case of y1). Theorem 
4.1 then implies that the consistency error is at least 0(h). So the needed inequality 
(5.2) will be satisfied for h sufficiently small, and the theorem is proved. O 

The construction and analysis of these schemes thus far has assumed explicit 
knowledge of the derivative and definite integrals of the coefficient function a in 
(1.1). We now show that if we approximate this needed information in a natural, 
numerical way, then we get the same uniform order of convergence. Suppose that in 
the subinterval [x,, xi+?], we approximate a locally by the polynomial qi of degree 
p - 1 that interpolates to a at the auxiliary evaluation points used in that subinter- 
val, viz., (I p = (l+1,1 = xl, (l,p+l = 41+1,2- -- 41,2p-l = (i+?,p = x,+1. We accept 
the integral and derivatives of qi as approximations to those of a and get 

a = q, + (C(hP+'), a'((,1j) = ql(ti + C(hV-), 
x x 

j=p,...,2p- 1, 
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and 

+1' a = 1J q, + ((hP+'), a'(t,?11) q;(t,?1,1) + (hP ), 
x + 1 AI tl 

i= 1,...,p. 

We then have the following theorem. 

THEOREM 5.3. Let the positive integer p be given. Let an approximate exponentially 
fitted HODIE discretization of (1.1) be constructed as in Section 3 but with the needed 
integrals and derivatives of a replaced by the numerical approximations indicated above. 
If a, b, andf are sufficiently smooth, then for all h sufficiently small, independent of , 
these finite-difference schemes are well defined and stable, and the associated discreti- 
zation error is uniformly (9(h P). 

Proof. All that we need to do here is to observe that our approximate scheme is a 
regular exponentially fitted HODIE scheme for the approximate problem 

L--u"i + (x)ui' + b (x)u1 = f (x), 0 < x < 1 

u (O) = go, i(1) = gi, 

where a is a continuous piecewise-polynomial approximation to a given by a(x) = 

qj(x), xl < X < x +I (here q, is the local polynomial interpolant introduced above). 
Now by construction, Ila - = (9(hP) (for a sufficiently smooth), and it 

follows that a(x) > a/2 > 0, say, for all h sufficiently small. Thus our previous 
analysis implies that the scheme is well defined and stable; we need only show that 

IIu - I is uniformly 69(h P). But this follows since e u - iu satisfies 

= (a(x) - a (x))u'(x), 0 < x < 1, 

e(0) = -(1) = 0, 

from which we obtain 

11jJ1,o < cl a - a ll u' ll < c'hP. 

Here we have used the facts that the operators L satisfy a uniform stability estimate 
of the type in Theorem 2.1 (for all h sufficiently small), u' satisfies (from Theorem 
2.2) 

u'(x) < c( + eexp( fa)) 

and I1I 1 exp(- 1 fl a)11I < c, uniformly in e. O 
We see that the same uniform order of convergence can be obtained using only 

those point evaluations of a (and b and f ) that were already required in the original 
formulation; p-values per mesh subinterval yield a uniform (9 (h P)-scheme. 

6. Numerical Results and Remarks. In this section are reported a small sample of 
numerical experiments to demonstrate the behavior of these exponentially fitted 
HODIE schemes. The results below are for the following model problem, 

(6.1) -eu" ? x+ 1 u' x2 u = f(x), 0 < x <1, 

u(O)= 1 + 2-1/e u(1) = e + 2, 
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with f corresponding to the true solution 

u(x) = ex + 2-1/e(x + ?)1+1/E. 

Approximate solutions were computed on a CDC 6600 in single precision (around 
14 decimal digit accuracy) using schemes constructed as in Section 3. 

Discretization errors were tabulated using a uniform mesh spacing h = 1/n, 
n = 4, 8, 16,. . .,1024 while holding the ratio p h/c fixed, that is, E > 0 as h -O 0 
with h/- constant. The experiments were constructed in this way to make it easier 
to observe the uniform convergence rates, which were approximated using 

P ~P - loglell 1 n == 4,8,..512. 

As an illustration, consider the uniform (9(h)-scheme. These results are contained in 
Table I below. 

This table exhibits one of the standard features of these schemes, namely, until E 

gets small enough for the problem to actually appear to be singularly perturbed, here 
around E < 4 (p = 2-4 and h = 1/128,...), one observes the nonuniform (fixed E) 

convergence rate, here (9(h2). Once this threshold is passed, however, the 47(h) 
convergence is clearly indicated. Also, for each n, the maximum liejjII occurs for 
2-2 < p < 22, with the errors decreasing outside of this range. This leads us to 
define (and approximate) 

|||e - max 11 e max |eK. 
?<P<O? p O2 2 

TABLE 1 

Maximum errors and approximate uniform convergence rates 

for the (9 (h) exponentially fitted HODIE scheme applied to (6.1) 

p = 2-4 p = 2-2 p = 20 

n lhell | P liell1 lell0 
4 .50(-1) .97 .44(-1) 1.13 .22(-1) 1.60 
8 .25(-1) 1.06 .20(-1) 1.58 .73(-2) -.86 

16 .12(-1) 1.28 .66(-2) 1.67 .13(-1) .29 
32 .53(-2) 1.63 .21(-2) -.82 .11(-1) .64 
64 .17(-2) 1.69 .37(-2) .30 .69(-2) .81 

128 .53(-3) -.81 .30(-2) .65 .40(-2) .89 
256 .93(-3) .30 19(-2) .81 .21(-2) .94 
512 .76(-3) .65 .11(-2) .89 .11(-2) .97 

1024 .48(-3) .58(-3) .57(-3) 

p 2 22 p =24 p =26 

n hlell0 P liell P liell P 
4 .34(-1) .18 .27(-1) [ .82 .12(-1) 1.13 
8 .30(-1) .64 .15(-1) .93 .54(-2) 1.14 

16 .19(-1) .81 .81(-2) .97 .25(-2) 1.09 
32 .11(-1) .88 .42(-2) .98 .12(-2) 1.05 
64 .59(-2) .94 .21(-2) .99 .56(-3) 1.03 

128 .31(-2) .96 .11(-2) 1.00 .27(-3) 1.02 
256 .16(-2) .98 .53(-3) 1.00 .13(-3) 1.01 
512 .80(-3) .99 .27(-3) 1.00 .67(-4) 1.00 

1024 .40(-3) .13(-3) .33(-4) 
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This "maximum-maximum" measurement of the error is tabulated below (Table 2) 
for the same model problem (6.1), using our uniform C9(hP)-schemes with p = 1, 2, 
3, and 4. These results clearly demonstrate the convergence rates predicted by the 
theory. 

By way of concluding remarks we mention that investigations are underway 
generalizing this approach to other singular perturbation problems, including linear 
turning-point problems and nonlinear problems in one dimension and linear convec- 
tion-diffusion problems in two dimensions. The applicability of the basic approach 
is quite general; essentially, if one has decent a priori information about the local 
behavior of the true solution of the problem, then this approach gives a way of 
incorporating that into the discretization. 

TABLE 2 

Maximum (over p) maximum errors and approximate uniform 
convergence rates for exponentially fitted HODIE schemes 

(9(hP), p = 1,2,3, and 4 appied to (6.1) 

p=1 p=2 p=3 p =4 

n Pleli 11 ieli.o P 111 eli.o P 111 elli.o P 

4 .50(-1) .73 .20(-2) 1.72 .28(-4) 2.68 .86(-6) 3.73 
8 .30(-1) .64 .60(-3) 1.87 .43(-5) 2.85 .65(-7) 3.88 

16 .19(-1) .81 .16(-3) 1.94 .60(-6) 2.93 .44(-8) 3.94 
32 .11(-1) .64 .43(-4) 1.97 .79(-7) 2.96 .29(-9) 3.95 
64 .69(-2) .81 .11(-4) 1.98 .10(-7) 2.98 .19(-10) * 

128 .40(-2) .89 .28(-5) 1.99 .13(-8) 2.98 * * 

256 .21(-2) .94 .70(-6) 2.00 .16(-9) 2.92 * * 

512 .11(-2) .89 .17(-6) 2.00 .21(-10) * * * 

1024 .58(-3) - .44(-7) - * _ * _ 

The technical details of rigorous convergence proofs can be extremely difficult to 
overcome, even for the one-dimensional problems. Here we were able to get enough 
information out of an asymptotic representation of the solution (essentially the 
multiple scales expansion) to do our truncation error analysis. Also, each of these 
problems requires a new stability analysis, as the standard results for ordinary 
differential equations and elliptic partial differential equations do not apply uni- 
formly in E. 
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